Скачать 

Усиленное обучение (Джеймс Девис)

Зарегистрируйтесь, чтобы посмотреть скрытый контент
Организатор
Организатор
Организую Складчины
Команда форума
Сообщения
603 093
Реакции
12 986
Монеты
325
Оплачено
1
Ссылка на картинку
Данное руководство по усиленному обучению (Reinforcement Learning, RL), охватывает теоретические
основы, практические применения и современные достижения. В начале дается определение RL, его исторический контекст и ключевые отличия от других видов машинного обучения. Примеры применения RL охватывают игры, робототехнику, финансовые рынки и управление ресурсами.

Математические основы включают марковские процессы принятия решений, состояния, действия, награды и политики, а также Беллмановские уравнения и итерацию ценности. Основные алгоритмы RL, такие как метод Монте-Карло, Q-Learning, SARSA, методы градиента политики, REINFORCE и Actor-Critic, рассматриваются вместе с моделями на основе планирования и глубокого усиленного обучения (DQN, DDPG, A3C).

Практическая часть книги включает использование OpenAI Gym и других сред, настройку и тестирование моделей, а также примеры кода на Python с использованием библиотек TensorFlow и PyTorch.

Формат: epub, fb2, fb3, ios.epub, mobi, pdf, txt
Показать больше
 
Зарегистрируйтесь , чтобы посмотреть авторский контент.
Поиск по тегу:
Теги
reinforcement learning tutor 1.0 джеймс девис наталья абрамова самоучитель тренер-преподаватель языки программирования
Похожие складчины
Найти больше схожих складчин

Зарегистрируйте учетную запись

У вас появится больше возможностей!

Создать учетную запись

Пройдите быструю регистрацию

Войти

Уже зарегистрированы? Войдите.

Сверху